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Particle-In-Cell (PIC) methods: 
s o l v e k i n e t i c a l l y c o l l e c t i v e 
interactions between the matter 
(p lasmas) seen as charged 
particles and electromagnetic fields 

Application domain: plasma physics, 
laser-matter interaction, particle 
accelerators 

WARP: Laser-thin foil interaction and ion acceleration 

WARP: Simulation of laser wakefield acceleration of 
electrons 

WARP: Conventional beam accelerators 

Particle-In-Cell code applications 
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PICSAR (Particle-In-Cell Scalable Application Resource): a high-
performance Fortran/Python Particle-In-Cell library targeting MIC 
architectures. 

 

•  designed to be interfaced with the PIC code WARP [2] used at Berkeley 
Lab 

•  soon released as an open-source project (already available upon 
demand) 

•  selected code for the NERSC Exascale Science Applications Program [1] 
(NESAP) that aims at preparing the arrival of the super-computer CORI 
phase II equipped of Intel Xeon Phi KNL. 

[1] http://www.nersc.gov/users/computational-systems/cori/nesap/ 
[2] http://warp.lbl.gov/ 
 

The high-performance library PICSAR 



The 4 main steps of the Particle-In-Cell 
loop 
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1 3 2

1)  Charge/current deposition* 
(Vectorization hotspot) 

3) Field gathering* 
(Vectorization hotspot) 

J, rho 

2) Maxwell solver: update 
of the field grids 

4) Particle pusher 

1 1 2

E,B 

Time 

* Interpolations steps between particle and the grids 



Optimization: Tiling (cache blocking) + 
OpenMP (shared memory) [1] 
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MPI domainTile 
Portion of the grid 

local to the tile

(1,1) 

Tile 
(3,4) 

Tile 
(3,1) 

§  Tiling: new subdivision into tile inside MPI domains: local field grids + guard 
cells from the global grids, local particle property arrays

§  Tile size:
•  field grids can fit in L2 cache (main constraint)
•  Particle arrays can partially or entirely fit in L3 on Haswell

§  Tiles are handled by OpenMP
•  Number of tiles >> number of threads = load balancing between the tiles  

Better 
memory 

locality and 
cache reuse.

Global grid of 
the MPI domain

Tile 
(1,4) 

[1] H. Vincenti et al, ArXiv 1061.02056 (2016) 
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Vectorization bott leneck of the 
classical charge/current deposition 

!	Charge	deposition	simplified	algorithm	
	
For	each	particle	in	a	tile:	
	
			1)	Determine	nearby	nodes	on	the	charge	grid	
					
			2)	Compute	current/charge	of	the	particle	
	
			3)	Deposit	contributions	to	the	charge	grid	

•  Conditions (if) removed from the inner loop: 
order-specific functions 

•  Step 1) contains type conversions and 
roundings (not good but can be vectorized) 

•  Step 2) can be vectorized 
 
•  Step 3) prevents vectorization due to memory 

races when 2 particles are in the same cell 

•  Grid nodes not aligned in memory: gather/
scatter 

Order 1 charge or 
current deposition 

•  C u r r e n t  g r i d s J x ( N C E L L S ) , 
Jy(NCELLS), Jz(NCELLS) 

•  Charge rho(NCELLS) 

[1] H. Vincenti et al, ArXiv 1061.02056 (2016) 



Vectorization bott leneck of the 
classical charge/current deposition 

6 

8 

!	Charge	deposition	optimized	algorithm	
	
DO	i=1,NUMBER_OF_PARTICLES,SIZE_VECT:	
	
				!$OMP	SIMD	
				DO	ip=1,SIZE_VECT:	
									
							1)	Determine	nearby	nodes	on	current	grids	
							and	store	them	for	the	SIZE_VECT	particles	
							2)	Compute	contributions	for	each	node	
	
				DO	ip=1,SIZE_VECT	
	
								!$OMP	SIMD	
								DO	k=1,8	
	
											3)	Add	contributions	in	the	temporary	
											array	structure	Rhocells	
	
Do	ic=1,NUMBER_OF_CELLS	
				4)	Reduction	of	rhocells	in	rho	
   

Cell icell 

Original 
Rho structure 

5 
7 

1 
2 

4 3 

New 
Rhocells structure 

1 

8 

New dimension for 8 
contiguous elements at 
icell 

Cell icell 
•  New dimension in the current and charge array to 

access vertices of a cell in a contiguous way 

•  Enable vectorization of the deposition with no 
memory races, no gather/scatter 

•  Reduction at the end in the original structure: Non-
efficient vectorization but in O(Ncells) with Ncells << 
Nparticles 

7 [1] H. Vincenti et al, ArXiv 1061.02056 (2016) 
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Benchmarking and profiling test case 

Test case: homogeneous thermalized plasma 
Ø  Balanced load: same amount of particles between MPI domains and tiles 
 
On KNL, the entire problem fits in MCDRAM 

Systems 
NERSC Cori phase 1 node 
2 Intel Haswell processors 

KNL NERSC white boxes 
64 core KNL 

 
SNC4 flat mode* 

Configuration 1 
(Non optimized) 32 MPI processes 64 MPI processes 

Configuration 2 
(Optimized) 

2 MPI processes, 16 
OpenMP threads per 

processor 

4 MPI processes, 32 
OpenMP threads per task 

(hyperthreading) 

*Similar performance results with Quadrant flat and SNC2 modes  
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Performance overview on Haswells and 
KNL for order 1 interpolation method 

•  Kernel: the main PIC loop (code without the initialization and diagnostics) 
•  Order 1: order 1 interpolation for the current/charge deposition and the field gathering 

•  Order 3: order 3 interpolation for the current/charge deposition and the field gathering 
•  Other: particle sorting, Maxwell solver, charge deposition 
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x1.4 longer 

Performance overview on Haswells and 
KNL for order 1 interpolation method 

•  Without optimization: simulation time 1.4 longer on KNL 
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2.4 speedup 
3.7 speedup 

Performance overview on Haswells and 
KNL for order 1 interpolation method 

•  Without optimization: simulation time 1.4 longer on KNL 
•  With optimizations: x2.4 speedup on Haswell and x3.7 on KNL 



Performance overview on Haswells and 
KNL for order 1 interpolation method 

x1.1 faster 

•  Without optimization: simulation time 1.4 longer on KNL 
•  With optimizations: x2.4 speedup on Haswell and x3.7 on KNL 
•  With optimizations: simulation time x1.1 faster on KNL at order 1 versus Haswell 



Performance overview on Haswells and 
KNL for order 1 interpolation method 

x1.1 faster 

•  Without optimization: simulation time 1.4 longer on KNL 
•  With optimizations: x2.4 speedup on Haswell and x3.7 on KNL 
•  With optimizations: simulation time x1.1 faster on KNL at order 1 versus Haswell 
Ø  Implemented optimizations essential on KNL to reach Haswell performance 
Ø  Implemented optimizations also speedup previous architectures (Haswell and Ivybridge) 



Thank You
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